

7. van Tamelen, E. E. and Schwartz, M. A. (1971) *J. Am. Chem. Soc.* **93**, 1780.
 8. van Tamelen, E. E. and Leopold, E. J. (1985) *Tetrahedron Letters* **26**, 3303.
 9. Coates, R. M. and Robinson, W. J. (1971) *J. Am. Chem. Soc.* **93**, 1785.

Phytochemistry, Vol. 27, No. 2, pp. 629–631, 1988.
 Printed in Great Britain.

0031-9422/88 \$3.00 + 0.00
 © 1988 Pergamon Journals Ltd.

24-METHYLENE-25-METHYLCHOLESTEROL IN *PHASEOLUS VULGARIS* SEED: STRUCTURAL RELATION TO BRASSINOSTEROIDS*

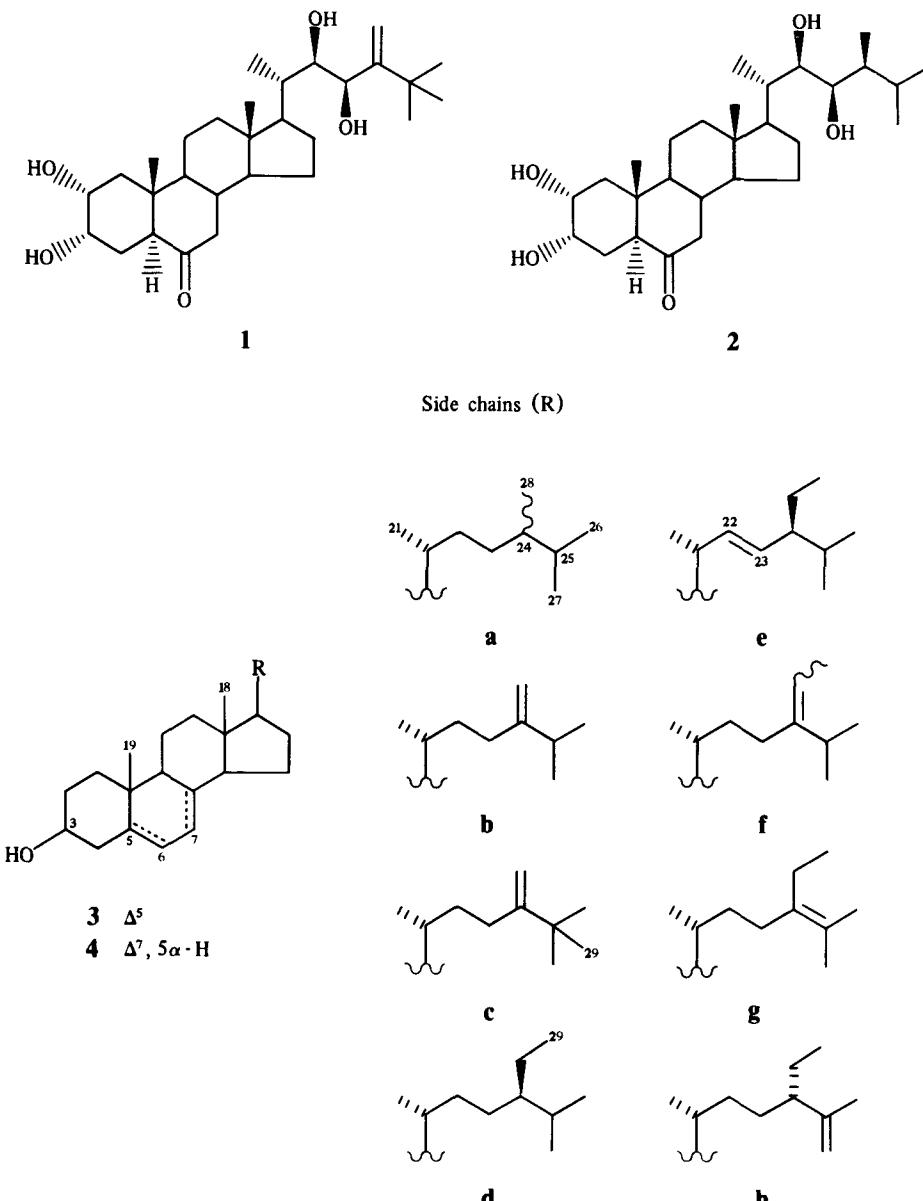
SEONG KI KIM,* TOSHIHIRO AKIHISA, TOSHITAKE TAMURA, TARO MATSUMOTO, TAKAO YOKOTA,* and NOBUTAKA TAKAHASHI*

College of Science and Technology, Nihon University, 1-8, Kanda Surugadai, Chiyoda-ku, Tokyo, 101 Japan; *Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113 Japan

(Received 30 April 1987)

Key Word Index—*Phaseolus vulgaris*; Leguminosae; seed; sterol; brassinosteroid; 24-methylene-25-methylcholesterol; 24-ethyldesmosterol; clerosterol.

Abstract—24-Methylene-25-methylcholesterol, 24-ethyldesmosterol and clerosterol in addition to several common phytosterols were identified in immature seed of *Phaseolus vulgaris*. 24-Methylene-25-methylcholesterol is considered closely correlated biogenetically with 25-methyldolichosterone, a brassinosteroid recently isolated from the same plant material, because both of them have the same basic side-chain structure.


INTRODUCTION

Immature seed of *Phaseolus vulgaris* cv. Kentucky Wonder has recently been demonstrated to contain 25-methyldolichosterone (**1**) as one of the major brassinosteroids [1]. The structure of this brassinosteroid is unusual because it contains a tertiary butyl moiety in the side chain. We have also isolated 24-methylene-25-methylcholest-5-en-3 β -ol (**3c**, 24-methylene-25-methylcholesterol) [2] and 24-methylene-25-methyl-5 α -cholest-7-en-3 β -ol (**4c**, 24-methylene-25-methylolathosterol) [3] from other higher plant sources, both of which carry a tertiary butyl moiety in the side chain. This prompted us to investigate the sterol constituents of the immature seed of *P. vulgaris* in order to examine the presence of sterols possessing a tertiary butyl group in the side chain. This paper describes the isolation and identification of **3c** and two other uncommon sterols, 24-ethylcholest-5,24(25)-dien-3 β -ol (**3g**, 24-ethyldesmosterol) and 24 β (S)-ethylcholest-5,25-dien-3 β -ol (**3h**, clerosterol), besides several common phytosterols, in the immature seed of *P. vulgaris*. In relation to the sterol constituents, some aspects of biogenesis of brassinosteroids are discussed.

RESULTS AND DISCUSSION

The sterol fraction obtained from the extract of the *P. vulgaris* seed was acetylated, and a portion (600 mg) of the sterol acetate was fractionated by argentation TLC into five fractions (referred to as fractions 1–5 in the order of mobility). Fraction 1 (R_f 0.64–0.77, 333 mg) was a mixture of two components which was then subjected to reverse-phase HPLC to give fractions 1A and 1B. Fraction 1A (mp 143–144°) was a 57:43 mixture of 24 α -methylcholesterol (24 α -**3a**, campesterol) acetate and 24 β -methylcholesterol (24 β -**3a**, 22-dihydrobrassicasterol) acetate. Fraction 1B was pure 24 α -ethylcholesterol (**3d**, sitosterol) acetate (mp 122–123°). Fraction 2 (R_f 0.37–0.64, 119 mg) was 24 α -ethyl-22E-dehydrocholesterol (**3e**, stigmasterol) acetate (mp 140–142°). Fraction 3 (R_f 0.25–0.37, 13 mg), on further purification by HPLC, afforded **3g**-acetate (mp 137–139°). Fraction 4 (R_f 0.10–0.25, 34 mg) was further fractionated by HPLC, giving fractions 4A and 4B. Fraction 4A was **3h**-acetate (mp 128–129°) and fraction 4B (mp 137–139°) was 24Z-ethylidenecholesterol (24Z-**3f**, isofucosterol) acetate accompanied by small amounts of the acetates of 24E-ethylidenecholesterol (24E-**3f**, fucosterol) and 24Z-ethylideneolathosterol (24Z-**4f**, avenasterol). Fraction 5 (R_f 0.02–0.10, 11 mg) was subjected to HPLC which gave fractions 5A and 5B. Fraction 5A (mp 131–134°) was a mixture (ca 8:2) of the acetates of 24-

*Brassinosteroids in *Phaseolus vulgaris* Part IV. For Part III, see ref. [1].

methylenecholesterol (**3b**) and 24-methylenelathosterol (**4b**), whereas fraction 5B was **3c**-acetate (mp 151–152°).

Identification of the above sterols was performed on the basis of argentation TLC, GC, MS and ¹H NMR data with the exception of 24Z-**4f** which was identified tentatively by argentation TLC and GC. The composition of *P. vulgaris* sterols was determined on the basis of argentation TLC, GC and ¹H NMR data as follows: 24 α -**3a** (2.9%; relative *RR*_s of the acetyl derivative to cholesteryl acetate on GC and HPLC are 1.31 and 1.14, respectively), 24 β -**3a** (2.2%; 1.31, 1.14), **3b** (0.8%; 1.35, 0.82), **3c** (2.6%; 1.68, 0.96), **3d** (55.9%; 1.63, 1.26), **3e** (23.6%; 1.43, 1.06), 24E-**3f** (0.9%; 1.72, 1.01), 24Z-**3f** (8.9%; 1.81, 1.01), **3g** (1.1%; 1.95, 1.00), **3h** (0.7%; 1.63, 0.92), **4b** (0.2%; 1.61, 0.82) and 24Z-**4f** (0.3%; 2.15, 1.01). The 400 MHz ¹H NMR data of a mixture of **3b**- and **4b**-acetates, and the acetates of **3c**, **3g** and **3h** are shown in Table 1.

Thus, this study has demonstrated the presence of **3c**, **3g** and **3h**, as the minor sterol constituents as well as several common phytosterols, in the immature seed of *P. vulgaris*.

The occurrence of sterol **3c** has hitherto been known only in some Cruciferae [2] and Cucurbitaceae [4], and its Δ^7 -isomer (**4c**) occurs in *Sicyos angulatus* (Cucurbitaceae) [3]. Although the occurrence of **3g** in some Solanaceae [5, 6] and olive oil [7] has been reported, the present work seems to be the first instance for its unequivocal identification through high-resolution ¹H NMR. The occurrence of 24 β -ethylsterol in higher-plants is known to be restricted, and only some plants from the Verbenaceae [8], Crassulaceae [9] and Cucurbitaceae [4, 10] have so far been reported to contain a 24 β -ethylsterol **3h**.

The occurrence of 24-methylene-25-methylcholesterol (**3c**) in the immature seed of *Phaseolus* is interesting in relation to the biogenesis of brassinosteroids, because 25-methylidolichosterone (**1**), one of the major brassinosteroids in the seed, has the basic side-chain structure identical with that of **3c**. In addition to 25-methylidolichosterone, castasterone (**2**) has been found to be also one of the major brassinosteroids [11]. The occurrence of the basic sterol corresponding to castasterone, namely, cam-

Table 1. ^1H NMR chemical shifts (CDCl_3 ; 400 MHz)* of some sterols isolated from *Phaseolus vulgaris* seeds

Acetate	18-H ₃ (s)	19-H ₃ (s)	21-H ₃ (d)	26-H ₃	27-H ₂ or 27-H ₃	28-H ₂	29-H ₃ (t)	3 β -OAc (s)	3 α -H (m)	6-H or 7-H (m)
3b†	0.683	1.020	0.955 (6.3)		1.023 (d, 6.7) 1.029 (d, 6.6)	4.657 (d, 1.4) 4.713 (s)	—	2.031	4.60 (26)	5.38 (10)
4b†	0.538	0.812	0.955 (6.3)		1.023 (d, 6.7) 1.029 (d, 6.6)	4.657 (d, 1.4) 4.713 (s)	—	2.026	4.60 (26)	5.15 (11)
3c	0.688	1.021	0.964 (6.6)		1.057 (s)	4.660 (d, 1.1) 4.833 (d, 0.8)	1.057 (s)	2.032	4.60 (25)	5.38 (10)
3g	0.682	1.020	0.969 (6.6)		1.627 (s) 1.633 (s)	—	0.932 (7.6)	2.032	4.60 (25)	5.37 (10)
3h	0.669	1.016	0.905 (6.6)	1.567 (s)	4.640 (d, 2.8) 4.727 (s)	—	0.801 (7.4)	2.030	4.60 (25)	5.37 (10)

*Chemical shifts given in δ values from TMS; figures in parentheses denote coupling constants (J values) as for doublet and triplet signals, whereas half-width ($W_{1/2}$) values as for multiplet signals.

†Determined as a mixture (fraction 5A, see Text) of 3b- and 4b-acetates.

pesterol (24α -3a) was also demonstrated in this work. These findings suggest that there should be a close relationship in the biogenesis between sterols and brassinosteroids [12]. Major sterols in *Phaseolus* seed are those carrying a 24α -ethyl group (sitosterol and stigmasterol) and an ethylidene group (isofucosterol) which together account for 88% of the total sterol amount. 24α -Ethyl- or 24 -ethylidene-carrying brassinosteroids were also found in the same seed [13], but their contents were quite low (unpublished data). This fact indicates that, in *Phaseolus* seed, oxidation reactions leading to brassinosteroids are fairly selective for 24 -methylsterols and 24 -methylene-sterols rather than 24 -ethylsterols and 24 -ethylidene-sterols. This is in contrast to the case of a green alga, *Hydrodictyon reticulatum*, in which both the major sterol and brassinosteroid are of the 24α -ethyl type [14].

EXPERIMENTAL

Mps: uncorr. Argentation TLC (silica gel- AgNO_3 , 4:1) was developed $\times 4$ with $\text{CCl}_4\text{-CH}_2\text{Cl}_2$ (5:1). HPLC was carried out on an Altex Ultrasphere ODS column (Beckman; 5 μ ; 25 cm \times 10 mm i.d.) with MeOH as a mobile phase (flow rate, 4 ml/min) which was monitored by an RI detector. GC on OV-17 SCOT glass capillary column (30 m \times 0.3 mm i.d.) was performed at the column temp. 260°. EIMS (70 eV) were recorded by means of probe injection. ^1H NMR spectra (400 MHz) were determined in CDCl_3 with TMS as int. standard. Acetylation was performed in Ac_2O -pyridine at room temp. overnight. Origin and extraction of the immature seed of *Phaseolus vulgaris* cv. Kentucky Wonder was described previously [1] and the sterol fraction was obtained according to ref. [14]. The following sterols; a mixture of 24α - and 24β -3a, 3b, 3d, 3e, 24E-3f, 24Z-3f, 24Z-4f and 3h [10], 3c [2, 4] and 3g [6], were used as the ref. specimens. The MS data of the acetates of 3c, 3g and 3h isolated from *P. vulgaris* seed in this study are as follows.

24 -Methylene- 25 -methylcholesterol (3c) acetate. MS: m/z 394.3569 ($\text{M}^+ - \text{HOAc}$, $\text{C}_{29}\text{H}_{46}$, rel. int. 100%), 379.3334 ($\text{C}_{28}\text{H}_{43}$, 10%), 296.2422 ($\text{C}_{22}\text{H}_{32}$, 76%), 281.2255 ($\text{C}_{21}\text{H}_{29}$,

16%) 253.1925 ($\text{C}_{19}\text{H}_{25}$, 19%), 228.1915 ($\text{C}_{17}\text{H}_{24}$, 10%), 213.1679 ($\text{C}_{10}\text{H}_{21}$, 11%), 211.1502 ($\text{C}_{16}\text{H}_{19}$, 6%).

24 -Ethyldesmosterol (3g) acetate. MS: m/z (rel. int.): 454 [$\text{M}]^+$ (0.3), 439 (0.4), 394 (52), 379 (5), 296 (100), 281 (19), 253 (15), 228 (11), 213 (12).

Clerosterol (3h) acetate. MS: m/z (rel. int.): 454 [$\text{M}]^+$ (5), 439 (3), 394 (100), 379 (9), 313 (3), 310 (2), 296 (4), 281 (5), 273 (4), 255 (8), 253 (12), 228 (10), 213 (15).

REFERENCES

1. Kim, S. K., Yokota, T. and Takahashi, N. (1987) *Agric. Biol. Chem.* **51**, 2303.
2. Matsumoto, T., Asano, S. and Itoh, T. (1983) *Phytochemistry* **22**, 2619.
3. Akihisa, T., Tamura, T. and Matsumoto, T. (1987) *Phytochemistry* **26**, 575.
4. Akihisa, T., Shimizu, N., Ghosh, P., Thakur, S., Rosenstein, F. U., Tamura, T. and Matsumoto, T. (1987) *Phytochemistry* **26**, 1693.
5. Lockley, W. J. S., Roberts, D. P., Rees, H. H. and Goodwin, T. W. (1974) *Tetrahedron Letters* 3773.
6. Itoh, T., Tamura, T. and Matsumoto, T. (1977) *Steroids* **30**, 425.
7. Itoh, T., Yoshida, K., Yatsu, T., Tamura, T., Matsumoto, T. and Spencer, G. F. (1981) *J. Am. Oil Chem. Soc.* **58**, 545.
8. Manzoor-I-Khuda, M. (1966) *Tetrahedron* **22**, 2377.
9. Nes, W. R., Krevitz, K., Joseph, J., Nes, W. D., Harris, B., Gibbons, G. F. and Patterson, G. W. (1977) *Lipids* **12**, 511.
10. Akihisa, T., Thakur, S., Rosenstein, F. U. and Matsumoto, T. (1986) *Lipids* **21**, 39.
11. Yokota, T., Morita, M. and Takahashi, N. (1983) *Agric. Biol. Chem.* **47**, 2149.
12. Yokota, T. and Takahashi, N. (1986) in *Plant Growth Substances 1985* (Bopp, M., ed.) p. 129. Springer, Berlin.
13. Yokota, T., Koba, S., Kim, S. K., Takatsuto, S., Ikekawa, N., Sakakibara, M., Okada, K., Mori, K. and Takahashi, N. (1987) *Agric. Biol. Chem.* (in press)
14. Yokota, T., Kim, S. K., Fukui, Y., Takahashi, N., Takeuchi, Y. and Takematsu, T. (1987) *Phytochemistry* **26**, 503.